
A Language Specification Tool for

Model-Based Parsing

Luis Quesada, Fernando Berzal, and Juan-Carlos Cubero

Department of Computer Science and Artificial Intelligence, CITIC,
University of Granada, Granada 18071, Spain

{lquesada,fberzal,jc.cubero}@decsai.ugr.es

Abstract. Typically, formal languages are described by providing a tex-
tual BNF-like notation specification, which is then manually annotated
for syntax-directed translation. When the use of an explicit model is re-
quired, its implementation requires the development of the conversion
steps between the model and the grammar, and between the parse tree
and the model instance. Whenever the language specification is modified,
the developer has to manually propagate changes throughout the entire
language processor pipeline. These updates are time-consuming, tedious,
and error-prone. Besides, in the case that different applications use the
same language, the developer has to maintain several copies of the same
language specification. In this paper, we introduce a model-based parser
generator that decouples language specification from language process-
ing, hence avoiding many of the problems caused by grammar-driven
parsers and parser generators.

Keywords: Language specification, parser generator, Model-Driven Soft-
ware Development (MDSD).

1 Introduction

Formal languages allow the expression of information in the form of symbol se-
quences [3]. A formal language consists of an alphabet, which describes the basic
symbol or character set of the language, and a grammar, which describes how to
form valid sentences in the language. In Computer Science, formal languages are
used for the precise definition of the syntax of data formats and programming
languages, among other things.

Most existing language specification techniques [2] require the developer to
provide a textual specification of the language grammar. The proper specifica-
tion of such a grammar is a nontrivial process that depends on the lexical and
syntactic analysis techniques to be used, since each kind of technique requires
the grammar to comply with different restrictions.

When the use of an explicit model is required, its implementation requires
the development of the conversion steps between the model and the grammar,
and between the parse tree and the model instance. Thus, in this case, the
implementation of the language processor becomes harder.



2 Luis Quesada, Fernando Berzal, Juan-Carlos Cubero

Whenever the language specification is modified, the developer has to manu-
ally propagate changes throughout the entire language processor pipeline. These
updates are time-consuming, tedious, and error-prone. This hampers the main-
tainability and evolution of the language [11].

Typically, different applications that use the same language are developed.
For example, the compiler, different code generators, and the tools within the
IDE, such as the editor or the debugger. The traditional language processor
development procedure enforces the maintenance of several copies of the same
language specification in sync.

In contrast, generating a model-based language specification is performed
visually and does not require the development of any conversion steps. By fol-
lowing this approach, the model can be modified as needed without having to
worry about the language processor, which will be automatically updated ac-
cordingly. Also, as the software code can be combined with the model in a clean
fashion, there is no embedding or mixing with the language processor. Finally, as
the model is not bound to a specific analysis technique, it is possible to evaluate
the alternative or complementary techniques that fit a specific problem, without
propagating the restrictions of the used analysis technique into the model.

Our approach to model-based language specification has direct applications
in the following fields:

– The generation of language processors (compilers and interpreters) [1].
– The specification of domain-specific languages (DSLs), which are languages

oriented to the domain of a particular problem, its representation, or the
representation of a specific technique to solve it [7,8,17].

– The development of Model-Driven Software Development (MDSD) tools [21].
– Data integration, as part of the preprocessing process in data mining [22].
– Text mining applications [23,4], in order to extract high quality information

from the analysis of huge text data bases.
– Natural language processing [9] in restricted lexical and syntactic domains.
– The corpus-based induction of models [12].

Although there are tools that generate language processors from graphical
language specifications [19,6], to the best of our knowledge, no existing tool
follows the approach we describe in this paper.

In this paper, we introduce ModelCC, a model-based tool for language spec-
ification. ModelCC acts as a parser generator that decouples language specifica-
tion from language processing, hence avoiding many of the problems caused by
grammar-driven parsers and parser generators.

2 Background

Formal grammars are used to specify the syntax of a language [1].
Context-free grammars are formal grammars in which the productions are of

the form N → (Σ ∪N)∗ [3]. These grammars generate context-free languages.



A Language Specification Tool for Model-Based Parsing 3

A context-free grammar is said to be ambiguous if there exists a string that
can be generated in more than one way. A context-free language is inherently
ambiguous if all context-free grammars generating it are ambiguous.

Typically, language processing tools divide the analysis into two separate
phases; namely, scanning (or lexical analysis) and parsing (or syntax analysis).

A lexical analyzer, also called lexer or scanner, processes an input string
conforming to a language specification and produces the tokens found within
it. A syntactic analyzer, also called parser, processes an input data structure
consisting of tokens and determines its grammatical structure with respect to
the given language grammar, usually in the form of parse trees.

Traditional efficient parsers for restricted context-free grammars, as the LL
[20], SLL, LR [14], SLR, LR(1), or LALR parsers [1], do not consider ambiguities
in syntactic analysis, so they cannot be used to perform parsing in those cases.
The efficiency of these parsers is O(n), being n the token sequence length.

Existing parsers for unrestricted context-free grammar parsing, as the CYK
parser [24,10] and the Earley parser [5], can consider syntactic ambiguities. The
efficiency of these parsers is O(n3), being n the token sequence length.

Lex and yacc [15] are well-known lexer generator and parser generator, re-
spectively. It is difficult to specify all the constructions of a language in BNF-like
notation without causing conflicts that these tools do not support [1].

ANTLR [18] is a lexer and parser generator that allows the generation of tree
parsers. Tree parsers are recognizers that process abstract syntax trees instead
of symbol sequences. This tool generates an LL(*) parser, which does not accept
ambiguous grammar specifications either.

YAJco [19] is a lexer and parser generator that accepts as input a set of Java
classes with annotations that specify the prefixes, suffixes, operators, tokens,
parentheses and optional elements. This tool generates a BNF specification for
JavaCC [16], which is a lexer and parser generator that supports LL(k) gram-
mars. Therefore, the developer still has to be careful so the grammar implicit in
the Java class set complies with the LL(k) grammar restrictions.

3 Model-Based Language Specification

We introduce ModelCC, a model-based tool for language specification that gen-
erates a language processor from a model.

3.1 Abstract syntax versus concrete syntax

The abstract syntax of a language is just a representation of the structure of the
different components of a language without the superfluous details related to its
particular textual representation [13]. On the other hand, concrete syntax is a
particularization of the abstract syntax that defines, with precision, a specific
textual or graphical representation of a language. It should be noted that a single
abstract syntax can be shared by several concrete syntaxes.



4 Luis Quesada, Fernando Berzal, Juan-Carlos Cubero

For example, the abstract syntax of the typical if-then-optional else sentence
of an imperative programming language could be specified as a composition of
a condition and one or two sentences. Two concrete syntaxes corresponding to
specific textual representations of such a conditional sentence could be speci-
fied as: {“if”, “(”, expression, “)”, sentence, and optionally “else” and another
sentence}, and {“IF”, expression, “THEN”, sentence, optionally “ELSE” and
another sentence, and “ENDIF”}.

When using ModelCC, the language designer has to focus on the language
abstract syntax model instead of focusing on specifying the BNF-like notation
that describes a concrete syntax.

The advantages of this approach have been widely studied [13]:

– Specifying the abstract syntax seems to be a better starting point than
specifying a concrete syntax.

– The language designer is able to modify the abstract syntax model and
generate a working IDE on the run.

– It is not necessary for the developer to have advanced knowledge on parser
generators to develop a language interpreter. In particular, the developer
will not need to face the restrictions these parser generators usually impose.

– Priorities and associativity restrictions between elements that can cause am-
biguities can be effortlessly established and modified.

3.2 Metamodel-based approach versus traditional approach

A diagram summarizing the traditional language specification procedure is shown
in Figure 1. It illustrates the requirements of giving a BNF-like language spec-
ification and converting it into an attribute grammar. It also shows the lack of
an explicit representation of the abstract syntax model, and the fact that the
concrete syntax is the starting point of the process.

Context-Free
Grammar
e.g. BNF

Conceptual
Model

Attribute
Grammar

Textual
Representation

Parser
Abstract
Syntax
Tree

Concrete Syntax Model Abstract Syntax Model

Parser Generatorinstance
of

instance
of

Fig. 1. Traditional language processing approach.

A diagram summarizing the model-based language specification approach
used by ModelCC is shown in Figure 2. Developer workload is reduced as it just



A Language Specification Tool for Model-Based Parsing 5

involves defining an abstract syntax model, which is annotated to automatically
generate the grammar of the concrete syntax and its corresponding parser.

Context-Free
Grammar
e.g. BNF

Conceptual
Model

Textual
Representation

Parser
Abstract
Syntax
Tree

Concrete Syntax Model Abstract Syntax Model

Parser Generatorinstance
of

instance
of

Fig. 2. Our approach to model-based language specification and processing.

3.3 Model specification

ModelCC provides the developer several mechanisms that can be used to cre-
ate a model. Two of them are typical in model specification: inheritance and
composition. The rest are annotations that complement the model elements by
specifying patterns, delimiters, cardinality, and evaluation order. A summary of
the annotations supported by ModelCC is shown in Figure 3

Constraints on... Annotation Usage

Patterns
@Pattern Pattern matcher for a specific element.
@Value Field where the matched text should be stored.

Delimiters
@Prefix Element prefix(es).
@Suffix Element suffix(es).
@Separator Element enumeration separator(s).

Cardinality
@Optional Composition optionality.
@Minimum Minimum element multiplicity.
@Maximum Maximum element multiplicity.

Evaluation
order

@Associativity Element associativity (e.g. left-to-right).
@Composition Eager or lazy constructions.
@Priority Element precedence level/relationships.

Fig. 3. Summary of the annotations supported by ModelCC.



6 Luis Quesada, Fernando Berzal, Juan-Carlos Cubero

4 Benefits of Model-Based Language Specification

As a simple example of the expression power of ModelCC, we have specified a
simple calculator-like language that supports the following constructions:

– Unary operators: +, and -.
– Binary operators: +, -, *, and /.
– The binary operators * and / share the higher precedence.
– The binary operators + and - share the lower precedence.
– Parenthesis can be used to enforce precedence.
– Integer and real number support, althought results are always real numbers.

The model-based specification of this language is shown in Figure 4.

BinaryOperator

~ eval(e1,e2 : Expression) : double

@Prefix("(")

Expression

~ eval() : double

BinaryExpression UnaryExpression

ParenthesizedExpression

@Suffix(")")

UnaryOperator

~ eval(e : Expression) : double

PlusOperator

MinusOperator

AdditionOperator SubstractionOperator

MultiplicationOperatorDivisionOperator

@Pattern("/")

@Pattern("+")

@Pattern("*")

@Pattern("-")

@Associativity(LEFT_TO_RIGHT)

@Priority(2)@Priority(2)

@Priority(1) @Priority(1)
@Pattern("-")

@Pattern("+")

IntegerLiteral
- @Value value : int

RealLiteral
- @Value value : double

LiteralExpression

2

Fig. 4. ModelCC specification of a simple calculator language.

Besides the model-based approach, the main functional advantages of using
ModelCC over other existing tools such as lex/yacc, YAJCo, or ANTLR are the
following:

– Apart from regular expressions, ModelCC allows the usage of pattern match-
ing classes, which can be coded for specific purposes. For example, a dictionary-



A Language Specification Tool for Model-Based Parsing 7

based matcher, in contrast to a regular expression-based matcher, could be
used for detecting verbal forms in ModelCC.

– ModelCC supports multiple composition constructions. There is no need to
bring the BNF-like notation recursion of enumeration specifications to the
model.

– ModelCC offers a generic associativity and priority mechanism instead of a
specific and limited operator specification mechanism. It supports creating
operator-alike constructions as complex as needed. For example, it allows the
usage of non terminal symbols as operators and defining n-ary operators.

– ModelCC provides mechanisms that allow the developer to solve most lan-
guage ambiguities. For example, expression nesting ambiguities can be solved
by using associativities and priorities, and if-then-optional else sentence nest-
ing ambiguities can be solved by using composition restrictions.

5 Conclusions and Future Work

We have introduced ModelCC, a model-based tool for language specification
that automatically generates a parser from a model representing the abstract
syntax of the language.

ModelCC automates several steps of the language processor implementation
process and it improves the maintainability of languages.

Moreover, ModelCC allows the reuse of a language specification among dif-
ferent applications, eliminating the duplication required by conventional tools
and improving the modularity of a language processing tool set, since it allows
the use of object-oriented design techniques to cleanly separate language speci-
fication from language processing.

It should be noted that the ModelCC approach is not bound to any particular
lexical or syntactic analysis technique. ModelCC models do not need to comply
with the constraints imposed by particular parsing algorithms.

A fully-functional ”proof of concept” implementation of ModelCC is soon to
be released at the www.modelcc.org website.

In the future, ModelCC will incorporate a wider variety of parsing techniques
so that it will be able to automatically determine the most efficient parsing
technique that does not incur in ambiguities for processing a particular language.

ModelCC will also be extended in order to support multiple concrete syntaxes
(for a single abstract syntax).

Finally, we also plan to study the use of ModelCC in different application
domains, including model induction, natural language processing, text mining
applications, data integration, and information extraction.

Acknowledgements:Work partially supported by research project TIN2009-
08296.

References

1. A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers: Principles, Tech-
niques, and Tools. Addison Wesley, 2nd edition, 2006.



8 Luis Quesada, Fernando Berzal, Juan-Carlos Cubero

2. A. V. Aho and J. D. Ullman. The Theory of Parsing, Translation, and Compiling,
Volume I: Parsing & Volume II: Compiling. Prentice Hall, Englewood Cliffs, N.J.,
1972.

3. N. Chomsky. Three models for the description of language. IRE Transactions on
Information Theory, 2:113–123, 1956.

4. V. Crescenzi and G. Mecca. Automatic information extraction from large websites.
Journal of the ACM, 51:731–779, 2004.

5. J. Earley. An efficient context-free parsing algorithm. Communications of the
ACM, 26:57–61, 1983.

6. H. Ehrig and G. Taentzer. Graphical representation and graph transformation.
ACM Computing Surveys, 31:9, 1999.

7. M. Fowler. Domain-Specific Languages. Addison-Wesley Signature Series (Fowler),
2010.

8. P. Hudak. Building domain-specific embedded languages. ACM Computing Sur-
veys, 28:196, 1996.

9. D. Jurafsky and J. H. Martin. Speech and Language Processing: An Introduction to
Natural Language Processing, Computational Linguistics and Speech Recognition.
Prentice Hall, 2nd edition, 2009.

10. T. Kasami and K. Torii. A syntax-analysis procedure for unambiguous context-free
grammars. Journal of the ACM, 16:423–431, 1969.

11. L. C. L. Kats, E. Visser, and G.Wachsmuth. Pure and declarative syntax definition:
paradise lost and regained. In Proceedings of the ACM international conference on
Object oriented programming systems languages and applications (OOPSLA ’10),
pages 918–932, 2010.

12. D. Klein and C. D. Manning. Corpus-based induction of syntactic structure: Mod-
els of dependency and constituency. In Proceedings of the 42nd Annual Meeting
on Association for Computational Linguistics (ACL ’04), pages 479–486, 2004.

13. A. Kleppe. Towards the generation of a text-based ide from a language metamodel.
volume 4530 of Lecture Notes in Computer Science, pages 114–129, 2007.

14. D. E. Knuth. On the translation of languages from left to right. Information and
Control, 8:607–639, 1965.

15. J. R. Levine, T. Mason, and D. Brown. lex&yacc. O’Reilly, 2nd edition, 1992.
16. C. McManis. Looking for lex and yacc for java? you don’t know jack, 1996. Java-

World, www.javaworld.com/javaworld/jw-12-1996/jw-12-jack.html.
17. M. Mernik, J. Heering, and A. M. Sloane. When and how to develop domain-

specific languages. ACM Computing Surveys, 37:316–344, 2005.
18. T. J. Parr and R. W. Quong. Antlr: A predicated-ll(k) parser generator. Software

Practice and Experience, 25:789–810, 1995.
19. J. Porubän, M. Forgáč, and M. Sabo. Annotation based parser generator. In

Proceedings of the International Multiconference on Computer Science and Infor-
mation Technology, IEEE Computer Society Press, volume 4, pages 705–712, 2009.

20. D. J. Rosenkrantz and R. E. Stearns. Properties of deterministic top-down gram-
mars. Information and Control, 17:226–256, 1970.

21. D. C. Schmidt. Model-driven engineering. IEEE Computer, 39:25–31, 2006.
22. P.-N. Tan and V. Kumar. Introduction to Data Mining. Addison Wesley, 2006.
23. J. Turmo, A. Ageno, and N. Cataà. Adaptive information extraction. ACM Com-

puting Surveys, 38:4, 2006.
24. D. H. Younger. Recognition and parsing of context-free languages in time n

3.
Information and Control, 10:189–208, 1967.


